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Abstract. Heterogeneous. “aggregated™ patterns in the
spatial distributions of individuals are almost universal
across living organisms, from bacteria to higher vertebrates.
Whereas specific features of aggregations are often visually
striking to human eyes, a heuristic analysis based on human
vision is usually not sufficient to answer lundamental ques-
tions about how and why organisms aggregate. What are the
individual-level behavioral traits that give rise to these
features? When qualitatively similar spatial patterns arise
from purely physical mechanisms. are these patterns in
organisims biologically significant, or are they simply epi-
phenomena that are likely characteristics of any set of
interacting autonomous individuals? If specific features of
spatial aggregations do confer advantages or disadvantages
in the fitness of group members, how has evolution operated
to shape individual behavior in balancing costs and benefits
at the individual and group levels? Mathematical models of
social behaviors such as schooling in fishes provide a prom-
1sing avenue to address some of these questions. However,
the literature on schooling models has lacked a common
framework to objectively and quantitatively characterize
relationships between individual-level behaviors and group-
level patterns. In this paper. we brielly survey similarities
and differences in behavioral algorithms and aggregation
statistics among  existing schooling models. We present
preliminary results of our efforts to devetop a modeling
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framework that synthesizes much of this previous work. and
to identify relationships between behavioral parameters and
aroup-level statistics.

Types of Aggregations

Aggregation occurs in the smallest organisms—bacte-
ria—and the largest—whales—and spans virtuatly the en-
tire extant diversity of taxon. habitat, trophic level, hfe-
history strategy. degree of mobility, and many other
biological characteristics (Parrish and  Edelstein-Keshet,
1999: Camazine er al., 2001). Physical aggregation can be
regarded as part of a continuum in group integration. At one
end of this continuum are territorial animals with little need
to engage in information transfer and no need for group
structure. At the other end are highly integrated. long-term
and perhaps
are even related to—other members of the group, and in

associations between ndividuals that know

which members can potentially have high rates of direct and
indirect information exchange. Honeybee hives, cetacean
pods, and human communities are examples of these highly
integrated groups (Witson, 1975). In these systems, estab-
lished pathways of long-term communication between
known individuals (clones. siblings. reciprocating group
members), or at predetermined locations (the hive, the calv-
ing grounds, the dinner table), may supplement immediate
sensory contact. Thus, the members remain part of the
“group” even while they range widely in space. In these
dispersed groups, coordinated function can be maintained as
long as the necessary information is transferred between
group members (e.g., the sensory integration systems of
Norris and Schilt, 1988: Schilt and Norris, 1997), though
distance between interacting components inevitably affects
the evolution and stability of emergent group properties
(Hillier and Hanson, 1990: Latané er al., 1995).




SELF-ORGANIZED FISH SCHOOLS 297

Between these extremes of group integration are what
could be considered “prototypical™ animal aggregations—
herds, swarms, flocks, and schools. Within the fishes, over
50% of species school—that is, display synchronous and
coordinated movement—at some point in their life histories
(Shaw, 1978), and an unknown additional number aggregate
more coarsely. Prototypical aggregations exhibit coordi-
nated motion, but group members are generally unrelated
and never develop lasting relationships (in the game-theo-
retic, “tit-for-tat” sense) with other members. Many of these
groups are extremely large (e.g., a school of a billion
herring). Individuals in such groups interact with a neigh-
borhood of other members, but those may represent a van-
ishingly small fraction of the group as a whole. This sug-
gests that mechanisms which maximize information transfer
among individuals could be evolutionarily beneficial. One
example of this is a repeated arrangement within the group,
reminiscent of crystal lattices, in which individuals assume
preferred positions and orientations relative to their neigh-
bors. Such arrangements could, for example, maximize sen-
sory contact between members in such as way as to reflect
ambient conditions, and the organisms’ predominant sen-
sory systems, morphology. ete. (Parrish, 1992: Parrish and
Edelstein-Keshet, 2000).

We can characterize possible behavioral adaptations in
members of these groups on at least two levels: (1) short-
term reactions to modify position with respect to immediate
neighbors: and (2) behavioral responses that do not neces-
sarily improve position relative to immediate neighbors but
that contribute to group-level characteristics that ultimately
benefit the individual by benefiting the group. These group-
level adaptations are among the most fascinating—and the

&

most difficult to assess—aspects of animal aggregations.

<

Pattern versus Funetion

Human perception tends to recognize attributes of the
whole: an even density profile, polarity, distinct edges, or
specific shape. While it is tempting to assume that conspic-
uous features of biological aggregations are somehow ben-
eficial. the existence of qualitatively similar patterns that
arise [rom physical phenomena shows that this need not be
the case. For example, some shapes found in three-dimen-
sional schools (e.g., torus and funnel) are echoed in two-
dimensional insect configurations (e.g., wheel), suggesting
that snch shapes may be adaptive for group members (Fig.
1). However, these patterns could be evolutionarily neutral,
or even pathological. Virtually identical shapes can be
found in a wide range of inanimate aggregations, from water
vapor to planets, in which these patterns arise from simple
abiotic interactions between individual components, in the
absence of evolutionary dynamics. Key steps in understand-
ing biological aggregations in nature must be to distinguish
biologically relevant features from nonadaptive epiphenom-

ena, and to more explicitly and mechanistically deseribe the
links between individual behaviors and group pattern.

Dynamic patterns and movement are necessary charac-
teristics of many biological aggregations, and are perhaps
better criteria to distinguish adaptive responses from epi-
phenomena. For example. fish schools display complex
emergent properties such as coordinated motion and di-
rected activity. Compression, hourglass, vacuole, fountain,
and flash expansion (Fig. 2; Pitcher and Parrish, 1993) are
all maneuvers that minimize predatory risk only if all mem-
bers perform them correctly (e.g., Parrish, 1989). Parabolic
formations in tuna schools may allow cooperative hunting
advantages (Partridge er al., 1983). These emergent group
properties appear to have readily apparent biological inter-
pretations, and physical analogs may be harder to find.
However, these dynamic group properties clearly confer
more evolutionary advantages under some circumstances
than others (e.g., evading small predators that target indi-
viduals while becoming targets for large predators that
target groups; Parrish, 1993). Furthermore, the key evolu-
tionary question remains: do these behaviors involve trade-
offs between short-term gain for the individual and long-
term  functioning of the group? If so, what is the
evolutionary context in which selection for these behaviors
occurs?

Traffic Rules

Assuming structure is advantageous, how is it main-
tained? Laboratory and field attempts to address this ques-
tion in fish schools have been limited (Partridge and Pitcher,
1980; Aoki er al., 1986: Parrish and Turchin, 1997). in part
because obtaining three-dimensional trajectories on specific
individuals for a relevant period of time is difficult. Data
that do exist are typically from highly artificial conditions
(e.g., relatively small schools in highly lit still-water tanks:
Parrish and Turchin, 1997). Three-dimensional tracking
techniques have not yet advanced to the stage where it is
feasible 1o observe large schools (i.e., over 10), in three
dimensions, over long times (i.e., for more than seconds).
Despite these difficulties, quantitatively accurate observa-
tions of fish behavior within schools will undoubtedly be-
come available in the next few years. However, while those
data will provide a means of assessing short-term behavioral
responses by fish to neighbors within a group. they will not
by themselves provide the strong linkage between individ-
ual and group characteristics that we require 1o understand
the mechanics and evolution of schooling behaviors.

Making this linkage requires an additional approach,
namely, mathematical or computational models of school-
ing behavior. These models posit a specific, quantitative set
of behavioral interactions—essentially, they create a set of
traftic rules—and quantitatively assess the emergent prop-
erties of the resulting schools. 1dealty, both the inputs (i.e.,
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Figure 1. Three- and two-dimensional expressions of emergent structure in animate and inanimate aggre-
gations—whorl patterns. Left: tornado structure in tish (top) and water vapor (bottom). Middle and right: whorl

and toroid in planets. fish, ants. and water vapor. clockwise from top left. Top left reprinted with permission by
FPG: bottom left courtesy of National Severe Storm Laboratory; nmiddle top and bottom courtesy of National
Aeronautic Space Administration; top right taken by Norbert Wu, www.norbertwu.com © 1999: bottom right
taken by T. Schneirla and reprinted with permission by W. H. Freeman & Company.

individuals® responses to neighbors) and model output
(group-level characteristics) can be compared to data from
real aggregations.

A key purpose of modeling is to distinguish behavioral
cause from organizational effect by studying the conse-
quences of various hypothetical social interaction rules.
Most simulation models of animal aggregations i the lit-
erature assign a set of forces that act on the speed and
direction of each individual and are modulated in response
to other individuals or the local environment. Typical force
components include locomotory (e.g., biomechanical forces
such as drag), aggregative (e.g., long-range attraction, short-
range repulsion), arrayal (e.g., velocity matching), and ran-
dom (e.g.. individual stochasticity: Griinbaum and Okubo,
1994). The detailed biomechanics of locomotory forces are
usually not considered in fish schooling simulations. In-
stead, most simulations simply associate behavioral move-
ment “decisions™ with the movements that result. However,
there are exceptions, notably a few modeling studies that

specifically address hydrodynamic interactions between
members of a school (e.g., Weihs, 1973).

Published modeling studies have for the most part ad-
dressed a relatively restricted range of behavioral algo-
rithms. Most analyses focus on variation in one of three
categories: behavioral matching, positional preference, and
numerical preference.

Behavioral matching (aka allelomimesis: Deneubourg
and Goss, 1989) occurs when the individual agents try to
match their behavior with other nearby agents. Most often,
behavioral matching is modeled by having each agent ex-
plicitly match its ortentation with that of its nearby neigh-
bors (e.g., a zone of paraliel orientation: Aoki, 1982; Huth
and Wissel, 1992: Dill er al.. 1997; Table 1. Fig. 3). Less
often, fish match their speed, either to that of their compan-
jons, or to some arbitrarily decided value (e.g., Romey,
1996: Vabo and Nottestad, 1997).

Positional preference refers to each fish having a pre-
ferred position relative to one or more of its companions.
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Examples of coordinated movement and directed aclivity, both emergent properties of fish

schools, which are also commonly cited defense tactics against predatory attack. Fig. 12.8. from Pitcher and
Parrish 1993, Reprinted with permission from the author and Kluwer Academic Publishers.

Usually, positional preference is formulated as a preferred
distance to one or more nearest neighbor(s). Variations on
positional preference include assigned distance zones (e.g.,
repulsion. parallel orientation. attraction. searching) within
which neighbors are treated equally (Huth and Wissel,
1992; Stocker, 1999) or continuous distance weighting
(Warburton and Lazarus, 1991; Reuter and Breckling, 1994
Romey. 1996). In some models. other positional parameters
influence responses. such as bearing angle to neighbors. or
estimated collision time (Dill ez al., 1997). The biological
underpinning is obvious: that individual group members do
not collide. that groups do not dissolve, and that stragglers
join. Taken together. behavioral matching and positional
preference describe what a fish should do. e.g.. move to-
wards or away rom neighbors, align with neighbors, search
for neighbors (Fig. 3; RPOA dependence. Table 1), and how
much consideration it should give any neighbor in the
perception field (neighbor scaling rule. Table 1).

Numerical preference refers to the number of neighbors
to which a fish pays attention, which we generically refer to
as the rule size. Variations include an a priori value (e.g., 4:
Warburton and Lazarus, 1991) or a conditional value (e.g..
choose up to 4 in the nearest zone: Aoki, 1982: choose up
to 4. front prioritized: Huth and Wissel. 1992). Many simply
have each fish average over all other fish (e.g., all visible:
Reuter and Breckling, 1994: Vaboe and Nettestad, 1997: all
fish: Romey. 1996).

In general, modeling studies of schooling have been
limited in several important respects, which future studies
should aim to improve upon. Most models have used a

relatively small population (e.g.. 8 to 20 fish: Table 1),
despite the fact that several studies point out that small
numbers of fish may produce artificial results (e.g., Romey,
1996). Most models have operated in two dimensions. Al-
though this may be justified on the basis of computattonal
resources, generalizing from two to three dimensions may
not be straightforward. Many models include some stochas-
tic or chaotic elements: however, the degree of replication in
modeling studies is generally lower than ideal to character-
ize the frequency distributions of possible outcomes.

Most simulation studies also assume that all individuals
are identical. Romey (1996) has shown that the inclusion of
a single fish with different traffic rules will alter schooling
(measured as group speed and turning rate). Furthermore,
the inclusion of multiple agents with one of two rule sets
produces sorting (Romey. 1996). which may translate into
emergent properties (e.g., horizontal bands versus extended
columns of ungulates, Gueron ez al., 1996). The possibility
that variability within the group may not only affect emer-
gent properties such as coordinated movement and spatial
pattern, but may also itself be an emergent property. clearly
deserves further consideration in modeling studies.

The parameter space explored by each model is typically
only a small subset of possible variations, which ideally
would include variations in (at least): initial position and
velocity: the strength and type of stochastic components:
spatial distribution of repulsion, parallel orientation, and
attraction; and degree ol variation between individuals in a
group (Table I). Because most studies are not consistent in
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Table 1

Summuary of fish school simulation parameters and output variables. R/PO/A-sequential Zones of repulsion, parallel orientation (variably used), and
attraction where “zone” implies equal force within a proscribed area (see Figure 3). Direction maiching implies the use of a zone of parallel
orientation. All other definitions as in the text. Numbers in parentheses refer to footnotes.

Population R/PO/A Direction
Reference Size Starting Orientation Velocity Dependence Matching? Neighbor Scaling Rule Size
Aoki (1982, 1984) 8,32 Random position & Ruandom Zone (1.2) Yes Position, weighted by  Upto+4
orientation within front priority
bounded urea
Warburton & Lazarus  2-9 Regular square lattice  Not specified  Linear distance No Constant 1-8
(1991)
Huth & Wissel 8 Random position & Random Zone (1) Yes Constant; Single Up to 4, tront
(1990. 1992, 1994 orientation in fixed choice (4) prioritized
area
Reuter & Breckling 10,20, 30,  Random position, Not clear Linear distance Yes Distance-weighted All visible
(1994) 40, 50 orientation & average (1/D; 1/D%)
speed within
bounded area
Romey (1996) 2-10 Random position & Constant Linear distance No Constant All
orientation within
bounded area (5)
Vabe & Nottestad 900 Random position & Constant Discrete distance No Single choice (7) All visible
(1997) orientation within
bounded & fixed
areas
Stocker (1999) 12,64 Random position & Constant Zone (1) Yes Constant Variable (8)

orientation within
bounded area

Reference

Random Component

(distribution)

Aggregation Indices
Individnal

Aggregation Indices
Group

Aggregation Indices
Population

Aoki (1982, 1984)

Warburton & Lazarus
(1991)

Huth & Wissel
(1990, 1992, 1994)

Reuter & Breckling
(1994)

Romey (1996)

Vabo & Nottestad
(1997)

Sticker (1999)

Gamma (speed);
Circular normal
Gamma (speed);

Normal (direction,

Normal (direction: 3)
(direction)
Normal (direction)

speed)

Uniform (direction; 6)

Net Individual Displacement
lnter-Individual Distance
Nearest Neighbor Distance

(neighbaors 1-3)
Nearest Neighbor Distance

Compactness (1/SD of x. v
coordinates)

Group Center Displacement:
Group Shape (max 11D*)/area

Polarization: Expanse (rms
distance to center)

Polarization; Expanse (mean
distance to center)

Group Speed; Group Turning
Rate

Discrete probabilities of

choosing less than
optimal direction

Unitorm (direction; 9)

lnstability (maximum
individual distance traveled)

Polanization; School Direction

Number of Schools

Number ot Schools:
School Size

Note that random components selected from a normal distribution are centered on calculated means as per Figure 3.
(1) Distance-specific zones of repulsion, parallel orientation, attraction, and searching. A blind spot (30-60 deg.) behind.
(2) Beyond the zone of attraction, but within the visual angle (270 deg). attraction based on huear distance.

(3) Outside the sensed area, direction was chosen from a uniform circular distribution (i.e.. random walk).

(4) Single Choice = choose only one neighbor with a weighted probability N1, 1/2N2, 1/4N3, 1/8N4.

(5) Individnals can sense entire area (~ 100 BL).
(6) Every 15 or 30 time steps.

(7) Highest (optimal) attraction value direction (of eight 45 deg increments) chosen.
(8) All neighbors within the parallel orientation zone considered equally. Only closest neighbor within attraction zone considered.
(9) Only applied to single tish with no neighbors (i.e., random walk searching).
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Figure 3. Caricatures of the atiraction-repulsion functions used by

various authors to simulate schooling in fish (see also Table 1). Repulsion
is always negative on the y-axis, whereas attraction is posilive. Zones of no
repulsion or attraction (e.g., parallel orientation) are at zero. The x-axis is
distance from fish of interest. displayed in arbitrary units. (a) Aoki (1982).
(b) Warburton and Lazarus (1991). (¢) Huth and Wissel (1990, 1992,
1994). (d) Curves showing the relative strengths of repulsion (left), parallel
orientation (center), and attraction (right) in Reuter and Breckling (1994).
Note that total social force always sums to 1.0 (¢) Romey (1996). (f) The
attraction strength nsed by Vabo and Nottestad (1997). (2) Stocker (1999).
(h) Our simulation.

these aspects (among others). direct comparisons of their
results are not possible.

Finally. although most avthors quantified school charac-
teristics in their simulations with one or more index of
aggregation, there is little or no consensus on which indices
are most biologically relevant. Consequently, difterent stud-
les tend to cite different statistics, again making compari-
sons difficult. For example, it is diffieult to determine
whether Romey’s (1996) model provides the same amount
of polarization as Huth and Wissel's (1992), because the
former did not report that particular emergent property. A
related but more subtle problem is that no single paper has
simultaneously presented indices at the individual. group,
and population levels (Table 1). In part this is because the
distinetion between group and population is meaningless in
some models (i.e., all individuals always interact and there-

fore the entire population is always part of the same group.
e.g., Aokl 1982: Reuter and Breckling. 1994). Even when
this is not the case. most studies use initial conditions or
behaviors that predispose individuals to start and remain
within a single large group. However, there are again nota-
ble exceptions, for example, the cellular antomata models of
Vabo and Nottestad (1997) and Stocker (1999); see also
Flierl er al. (1999).

Inconsistencies between modeling approaches and aggre-
gation indices have led different authors to draw seemingly
contradictory conclustons about how individual behaviors
affect group-level characteristies. For example, Aoki (1982;
1984) reports that removing the repulsion zone causes
school disintegration. whereas Huth and Wissel (1990,
1992, 1994) assert it has little effect on schooling. Huth and
Wissel (1990, 1992, 1994) maintain that only a low number
of influentual neighbors (<< = 3) are needed, whereas War-
burton and Lazarus (1991) state that increasing the rule size
1s essential for school stability. Reuter and Breckling (1994)
and Romey (1996) found that adding random or individual
movement had hittle effect on schooling, but Warburton and
Lazarus (1991) concluded that the incorporation of random
movements destroyed schooling. Because these studies lack
a common framework for specifying behaviors and summa-
rizing spatial patterns, it is not possible to resolve whether
these reflect true hiological differences or simply compari-
sons between apples and oranges.

A Synthetic Simulation Study

We are currently working on a simulation model of fish
schooling that explores much of the parameter space cov-
ered in previous models. Our model operates in three di-
mensions, and does not (as yet) include any rules that.
priori, program emergent property (i.e., no behavior match-
ing or zone of parallel orientation). Following Griinbaum
and Okubo (1994) and others, we model the movement
decisions of each fish as a sum of locomotory. social, and
random forces. Model fish are based on our quantitative
observations of schooling giant danios (Darnio aequipinanis;
unpub. data), with a mass of 1.7 g, a length of 5.3 cm, a
maximum speed of 11.2 body lengths [BL]/s, and a maxi-
mum aceeleration of 11.2 BL/sY). Locomotory foree con-
sists of drag, specitied as a drag coefficient (Cp) of 0. 0.01,
or 0.02 (based on a range of estimated drag coetficients for
streamlined bodies = 0.01-0.001; Videler, 1993). Details
of the methodology are presented elsewhere (Viseido er al.,
unpub. data).

We have thus far used this model to study a range of
population from 2 to 128 fish. but report here only results
for 128 fish. We examined variation in three aspects of the
social force: the attraction/repulsion function, the neighbor
scaling rule. and the rule size. Attraction/repulsion was
modeled as a linear, piecewise linear. or convex (sensu
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Tabie 2

Aggregation indices at the individual, group, or population level used 1o evaluate traffic rudes in our sunulation

Index

Computation Level

Curvature
Fractal Dimension

Mean turning angle per cm traveled
How ““dimensional™ the path is

Individual
Individual

NGDR Net displacement divided by gross displacement Tndividual
NND Mean linear distance o nearest neighbor Individual
Group Size Number of fish within 5 body lengths of each other Group
Expanse Mean quadratic distance to ceater for each group Group
Polarization Mean angle deviation between individual and group heading Group
Groups Number of groups in the universe, wcluding stragglers Population
Stragglers Number of fish more than 5 body lengths trom any other fish Population
Colhisions Number of collisions per fish per minute (reported as total collisions) Population
Clark and Evans (1954) Index Observed NND vs. expected NND for a randomly spaced population Populaton

Warburton and Lazarus. 1991) function with £ = 0 cen-
tered at 1.9 BL (Fig. 3h). We based this preferred nearest
neighbor distance on schooling experiments with real fish
from a previous study (Parrish and Turchin, 1997). We used
a perception distance of 180 BL (i.¢.. so individuals could
detect neighbors to which they choose not to respond). A
neighbor scaling rule weighted the attraction/repulsion lorce
by the distance to each influentiad neighbor. Weighting was
constant (i.e., equal weighting), negative linear, or negative
sigmoid. Finally, the number of influential neighbors (rule
size) was set at 4, 8, 16, or 24 fish.

Random force was chosen for each timestep from a
normal distribution with mean F = 0 and standard devia-
tion equivalent to 1/3, 1/6, and 1/18 of the maximum social
force an individual fish could experience from another fish.
The amount of random force experienced by any individual
was a function ol the distribution of nearby neighbors,
Individuals within a school experienced relatively little so-
cial force because most neighbors are at or near the equi-
hbrium (i.e.. F' = 0), thus random forces can be propor-
tionately large. Individuals divorced from the group but
close enough to sense it experienced maximum social force
(i.c., attraction), and proportionately little random force. In
our simulations, median random force as a function of total
force ranged [rom 8%—18% depending on rule size. We
computed fish movement as acceleration resulting from the
sum of random and social forces, minus drag.

Each parameter combination in our simulations were
replicated 15 times, for 1800 time steps (ol 1 s) each, We
examined our model output with a suite of 11 aggregation
indices that encompass individual- to population-level char-
acteristics (Table 2). Statistics were based on time averages
taken over the second halt of each simulation (900 time
steps), to avoid undue influence from initial conditions. We
report here the results of systematic comparison within a
single rule (e.g., drag of versus high drag) where the default
conditions were medium random force, no drag, piecewise
linear attraction/repulsion, constant neighbor scaling, and a

rule size of 16. All numbers in text are means, and all
statistics are one-way ANOVAs,

In general. over the range of parameter values we used,
asocial forees (drag, randommness) had a less drastic eifect on
fish schooling behavior than did the various functions com-
posing the social force (Fig. 4). Within the range of random
force examined, there was no significant effect on any index
of aggregation (Fig. 4). The addition of drag slowed fish
down and increased the tortuousity of their paths. with a
resulting increase in group size (without drag—46 fish/
group, with drag—104 fish/group) and cohesion (without
drag—1.5BL, with drag—I{.1BL). These larger, slower
groups milled rather than moving forward (net to gross
displacement ratio [NGDR| dropped trom 0.5 10 0.1). which
decreased polarization. However. once added. there was no
difference between the low and high drag condition (Fig. 4).

Social forces had a significant effect on most measures of
schooling. Fish with convex attraction-repulsion (A/R) re-
sponses stayed closer together and had more tortuous paths
than fish with piecewise linear A/R responses. The result
was an increase in - cotlisions (convex—720 collisions:
piccewise lincar—270 collisions: Fig. 4). Polarization was
unalfected: it was equally low (83 deg.) for both Junctions.

Numerical preference had strong effects. both in terms of the
number of influential neighbors and how that influence was
scaled. Changing the neighbor scaling rule from equal weight-
ing to a negative sigmotd Tunction effectively increased the
influence of close neighbors. Fish moved faster and in
straighter paths. Schools became smaller (sigmoid—33 {ish/
group; constant— 04 fish/group) and slightly more polarized
(sigmoid—70 deg.; constant— 83 deg.), but also more diffuse
(sigmoid—F.9BL: constant-—1.1BL). As a result. collisions
decreased (sigmoid—35 colhisions: constant—270 collisions).
Using a smaller rule size (4 fish) produced equivalent results to
negative sigmoid neighbor scaling. Thus a higher number of
influential neighbors increases school size at the expense of
internal structure (measured as polarization), Paying attention
1o more neighbors leads to large groups because it causes a
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Index Randomforce Drag A/Rfunction  Nexghbor Rule Size
Low High Convex Scaling 4
(High) (Low)  (Precewise Logistic (16)
linear) (Constant)
Curvature O I ' ' O
Fractal D <> <> ' l O
NGDR & o l " I
NND S o l I '
Grp Size <> <> O l l
Expanse O O l I l .
Polar <> 0 0 ' I
# groups <> 0 0 I I
# strag <> O 0 O t
# crashes O l ' 1 l
IoA & O 1 I )

Figure 4. Results of one-way ANOVAs systematically comparing
parameter values within a given traffic rule listed as column headings.
Within each tratfic rule, arrows indicate a significant difterence in the index
between the listed condition (e.g., rule size, “4" nearest neighbors) to that
of the default set in parentheses (one-way ANOVA. n = 15, P < 0.001).
White diamonds indicate no significant ditference. Rows are 11 indices of
ageregation. [ndividual level: path curvature, tractal dimension thigher is
more tortuous), net to gross displacement ratio (NGDR: higher s
straighter). nearest neighbor distance (NND). Group level: group size (in
fish). mean distance (o group center (or expanse, in body lengths), polar-
ization (lower is more aligned). Population level: number of groups.
number of collisions. number of stragglers, and the Cluark and Evans (1954)
index. See Table 2 for details on how each index was computed.

“network of overlapping influences™ (Warburton and Lazarus.
1991): each group member “pulls on™ a different set of com-
panions. causing groups to remain cohesive. Over the range of
rule size (RS) examined.

Group Size = 3RS — 7 (df = 59,7 = 0.85).

Several other higher order properties emerged during our
modeling. There was a clear linear relationship between
group speed and polarization, across all rule sizes. Faster
eroups are more polarized (Fig. Sa). We note that there is no
preferred speed, so that this is not an inevitable result of a
polarized group, but probably reflects the fact that slower
groups are composed of individuals with more tortuous
paths. We also have begun to examine substructure within
groups. At the level of an individual's immediate neighbors
(here defined as N1-6), nearest neighbor distance is virtu-

ally identical (Fig. 5b). indicating that at this scale. spacing
is quite regular. However., when rule size is very large (24
influential neighbors). this relationship breaks down (Fig.
Sby, perhaps indicating an upper limit for rule size.
Although our results are preliminary, they highlight some
interesting patterns. First. school cohesion and coordinated
movement can be partially achieved by positional and nu-
merical preferences. without the need for behavioral match-
ing. This shows that schools nught indeed arise by large
numbers of simple, overlapping interactions (Warburton
and Lazarus, 1991; Romey, 1996). Our preliminary results
also indicate that the shapes of the tunctions used to char-
acterize both positional and numerical preferences are
clearly very important (Fig. 4). and worthy of careful in-
vestigation in the {uture. Finally, our results demonstrate the
need to consider many different quantitative indices of
ageregation when assessing model results (Fig. 4).

&

Emergent Evolution

A central issue in modeling studies of aggregation is
distinguishing between group- and population-level charac-
teristics that are direct, inevitable consequences of the as-
sumptions built into the model, and those that are truly
“emergent properties.” In an evolutionary context, the im-
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Figure 5. Higher-order index comparisons. (A) Group speed versus
polarization for rule sizes 4. 8, 16, and 24, (B) Mean variance in the six
nearest neighbor distances tor individuals in the center of the school, over
four rule sizes. Individuals were considered “central™ if they were closer to
the group center than the median distance 10 center for the whole group.
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portance of this distinction 1s that emergent properties may
be closely tied to indirect behavioral adaptations, which
benefit individuals by benefiting the group. To satisfy the
definition of emergent properties, the larger system (the
group) musl possess them. while its components (the indi-
vidual members) do not (Clark er al., 1997). To a large
exlent. designating a group characteristic as “emergent” or
not is a matter of degree. For instance, models in which
individuals actively align their directions to those of neigh-
bors typically produce polarized groups (Huth and Wissel,
1992, 1994; Reuter and Breckling. 1994: Stocker, 1999),
but this is probably too direct an outcome of the assump-
tions to be considered an emergent property. Dill er al.
(1997) pose a model in which each fish estimates its time to
impact with other fish. In such a system. agents implicitly
consider their neighbors™ orientation, velocity, and position,
rather than explicitly doing so. Collision avoidance would
therefore seem to be a direct outcome and not an emergent
property of this model. However, what about the converse:
is polarization an emergent property of collision-avoidance
behavior?

From a biological perspective, un operational distinction
might be to consider whether the group behavior benetits
the members because of their membersiip. For example,
Griinbaum (1998) used model results to suggest that when
individuals simultancously display gradient-climbing and
alignment behaviors in a noisy environment, groups 1o
which they belong more accurately climb environmental
gradients, whereas loners can not. If displaying both behav-
jors 1s costly to an individual, but it nonetheless benefits by
being part of a group in a better environment. this would
qualify as emergent under this criterion.

Given the relatively underdeveloped state of schooling
behavior models and observations that unify individual.
group, and population characteristics, it 1s unavotdable that
studies of the evolutionary “hows and whys™ of schooling
renain somewhat speculative and oversimplified. Nonethe-
tess, several studies have attempted to incorporate evolu-
tionary ideas into schooling models by allowing iterative
improvement of parameters, using an objective function as
an analog to “fitness™ in the evolutionary sense (Huse and
Gjoesaete. 1999; Bonabeau er al., 2000). For instance, Hira-
matsu ez al. (2000) link a standard simulation of schooling
(4 la Huth and Wissel, 1992) to a genetic algorithm that

selects the width of the paraltel orientation zone, the size of

the blind angle, the number ol influential neighbors, und the
neighbor scaling rule (front, side. or distance priority, ran-
dom choice) to maximize fitness. In this case, fitness is
modeled as the minimization of four output variables: near-
est neighbor distance, polarization, expanse. and fractal
dimension. As a result, parallel orientation zone is maxi-
mized and blind angle is minimized. A larger question is
whether this definition of most fit—that is, least vari-
able—is correct?

Simulation studies like these hinge directly on two ques-
tions (1) what is optimal. and (2) what is the relationship
between individual and group optimality? Such questions
are certain not to have simple or universal answers. 1t is
unlikely that we will soon attain complete, realistic models
of an aggregating organism’s life history that would allow
us to truly represent “fitness™ in a population with evolving
behaviors. However, we are optimistic about the role of
schooling simulations in addressing two central issues
raised in this paper. First. we believe model studies will be
successful in elucidating the mechanistic relationships be-
tween individual-level behavior and the group-level spatial
patterns they produce. Second. we expect that the combi-
nation of exphicit observations of schooling fish, inproved
simulations of the observed behaviors, and expanded use of
statistical indices of aggregation on real and model aggre-
gations will prove sufficient to identify the true behavioral
algorithms used by fish.
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